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The r e s u l t s  of an expe r imen ta l  inves t iga t ion  into the nons ta t ionary  (transient)  heat  t r a n s f e r  
f rom an ex te rna l  medium to the wal l s  of a dead-end  cy l ind r i ca l  channel f i l led with l iquid and 
c losed  by a copper  bot tom a r e  p r e sen t e d .  The expe r imen ta l  appara tus  and method of conduc-  
ting the expe r imen t s  a r e  de sc r i bed .  

In this  p a p e r  we shal l  be cons ider ing  heat t r a n s f e r  f rom an ex te rna l  medium to the wal ls  of v e r t i c a l  
and incl ined cy l ind r i ca l  channels  in an infini te s lab .  The channel is f i l led  with liquid, t h e r m a l l y  insula ted  
on one s ide  and c losed  with a me ta l  bot tom on the o ther .  We shal l  cons ide r  the case  of a sudden change in 
the t e m p e r a t u r e  of the ex te rna l  medium, for  which heat  t r a n s f e r  is main ly  executed by na tu ra l  convection 
of the l iquid in the channel .  

An ana lys i s  of the d i f fe ren t ia l  equations and uniqueness condit ions desc r ib ing  heat  t r a n s f e r  to the s u r -  
face of the channel by g e n e r a l i z e d - v a r i a b l e  methods y ie lds  the following laws for  the Biot c r i t e r i o n  and the 
d imens ion l e s s  t e m p e r a t u r e  of the l iquid in the channel: 

T r 
Bi = A(GrPr2)gFo"~BiPex( -o / '  (1) 

\ rex--  To j 

= Pr )0 FoYBlex (2) 

In de te rmin ing  the fo rm of these  r e l a t ionsh ips ,  it was a s s u m e d  that the re  was a functional r e la t ionsh ip  
of the power  type between the c r i t e r i a l  quant i t ies ,  and a l so  that the s imp lexes  ab/aol  and a s / a o l  v a r i e d  over 
a na r row range  and had no effect on the va lues  of Bi and d. 

The expe r imen t s  we re  des igned to evaluate  the coeff ic ients  of p ropor t iona l i ty  and the power indices  in 
(1) and (2). T h r e e  models  were  accord ing ly  p r e p a r e d  in the form of hollow th in-wal led  c y l i n d e r s .  The 
g e o m e t r i c a l  d imens ions  and m a t e r i a l s  of the models  a r e  indicated in Table  1. 

A copper  bot tom was a t tached to the lower pa r t  of model  No. 1, and the channel was e l o s e d w i t h a  s top-  
p e r  a t  the top. A d ra in  s y s t e m  was a l so  p laced  at  the top in o rde r  to compensa te  for  the t h e r m a l  expansion 
of the l iquid on heat ing.  Th i r t y  six C h r o m e l - C o p e l  the rmocouples  were  p laced  in four c r o s s  sec t ions  spaced  
over  the height of the model .  Models  2 and 3 had a s i m i l a r  cons t ruc t ion .  

The a r r a n g e m e n t  of the exper imen ta l  appara tus  is  shown in Fig .  1. In o rde r  to es tab l i sh  an in i t ia l  
t e m p e r a t u r e  of T O = 283-373~ the model  was i m m e r s e d  in the t h e r m o s t a t  5a; in o r d e r  to e s t ab l i sh  a tern-  
p e r a t u r e  of T O = 273~ it was i m m e r s e d  in the t he r m os t a t  5b. The boundary condit ions were  e s t ab l i shed  

TABLE 1. Dimens ions  and M a t e r i a l s  of the Models  

No. of 
model 

External Diameter of Length of 
diameter, mchannel, m model, m 

0,11 0,03 0,40 
0,08 0,02 0,40 
0,37 0,08 1,25 

Material 

Textolite 
organic glass 2-5 

Textolite 
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Fig. i .  Arrangemen t  of the exper imenta l  apparatus:  
1) model; 2) heat exchanger;  3) control  desk; 4) t r a n s -  
fer  pump; 5a,b,  c) the rmos ta t s ;  6) measur ing  device.  

by means  of a special  oil s y s t e m  compr i s ing  a t he rmos ta t  5c, a pump 4 with an o i l - p r e s s u r e  regula tor ,  and 
a heat  exchanger 2. The the rmos ta t  5c ensured  a constant  t e m p e r a t u r e  of the oil Tex.  Using the p r e s s u r e  
regula tor ,  a specif ied veloci ty  was impar ted  to the oil in the heat  exchanger,  and any des i red  h e a t - t r a n s f e r  
coefficient  re la t ive  to the bot tom of the model  was thus es tabl i shed for constant  t e m p e r a t u r e s  Tex and T 0. 
In o rder  to el iminate heat t r a n s f e r  along the sides,  the model was the rma l ly  insulated with a thick felt  c a s -  
ing. The channels  of the model  were  filled with liquid (kerosene T - l ,  dist i l led water ,  or  t r a n s f o r m e r  oil). 

In order  to c a r r y  out the exper iments  on model No. 3 a special  t he rmos t a t  was designed and made .  

By studying the r e su l t s  of the exper iments ,  we de te rmined  the laws governing the changes taking 
place  in the t e m p e r a t u r e s  of the liquid and the sur face  of the channel with t ime,  and f r o m  the resul tan t  data 
we calculated the t he rm a l  flux and h e a t - t r a n s f e r  coeff icient .  To this end we f i r s t  solved the p rob l em of the 
t e m p e r a t u r e  field of a hollow, infinite cyl inder  with t ime -va ry ing  boundary conditions of the f i r s t  kind, and 
then de te rmined  the der iva t ive  of the t e m p e r a t u r e  with r e spec t  to the rad ius .  

The init ial  t he rm a l  fluxes to the bot tom of the model  were  m e a s u r e d  by means  of copper  c a l o r i m e t e r s  
[11. 

The f i r s t  s e r i e s  of exper iments  was a imed at determining the power index of the Blot c r i t e r ion  in Eq. 
(1). For  this purpose  we specif ied a new value of aex  in each exper iment ,  while the remaining  p a r a -  
m e t e r s  determining the h e a t - t r a n s f e r  p roce s s  r emained  constant .  On the bas i s  of the exper imenta l  r e su l t s  
we cons t ruc ted  the Bi = f(Fo, Biex) re la t ionship .  Analysis  of the exper imenta l  curves  showed that the 
Bi = f (Fo) re la t ion  was sa t i s fac to r i ly  descr ibed  by the equation 

Bi = CFo(1 - -  0,385Fo). (3) 

Allowing for  (3), Eq. (1) may  be wri t ten as  follows: 

Bi -- D (Gr Pr2)~ BiPx / To ~Fo (1 - -  0,385 Fo). (4) 
kTex-- To] 

The re la t ionship thus obtained enables us to analyze  the resu l t s  of the f i r s t  s e r i e s  of exper iments  in 
the f o r m  

lg Bi - -  lg Fo (1 - -  0.385 Fo) = F ~- p lg Biex" (5) 

We found that Eq. (5) was a lmos t  l inear,  with p = - 0 . 4 .  

In the next s e r i e s  of exper iments ,  the initial t e m p e r a t u r e  of the model  and the t e m p e r a t u r e  of the ex- 
t e rna l  medium were  va r i ed  so that  the ra t io  T 0 / f l e x -  To) remained  a lmos t  the s ame  f r o m  one exper iment  to 
another .  Analysis  of the exper imenta l  r e su l t s  in the f o r m  of the re la t ion 

lg Bi - -  lg Fo (1 - -  0,385 Fo) + 04 lg Biex= f (Gr Pr2)0 
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Fig.  2. Dependence  of N = - { l o g  B i -  log [Fo(1 - 0.385 Fo)] + 0.45 log (AT/T0) - log  (GrPr2)~} on log Biex  (a); 
M = l o g B i  + 0.45 log (AT/T0) +0 .41ogBi e x  - l o g  Fo �9 (1 - 0.385 Fo) on log (GrPr2)0 (b) and log - 0.44 l o g F o  
on log (GrPr2)0 (c) (the c u r v e s  in a and b w e r e  ca lcu la ted  by Eq. (6) and those  in c by Eq. (7)): 1) d = 0.03 
mm,  work ing  subs t ance  k e r o s e n e  T - l ;  2) 0.02 m, ke rosene ;  3) 0.02 m, water ;  4) 0.08 m, t r a n s f o r m e r  oil.  

\ 
\ 

\ 
Sa ~A lg Biex 

enabled us to d e t e r m i n e  the power  index of the c r i t e r i o n  (GrPr2)0 n = 1. Thus  Eq. (1) t r a n s f o r m s  into the 
f o r m  

Bi D(GrPr2) ~ -0.4 ( To / '  = Biex Fo (1 - -  0.385 Fo) \Tex-- T O ] ' 

f r o m  which it fol lows that  the r e s u l t s  of e xpe r imen t s  w i t h a n y a r b i t r a r y  combina t ion  of the p a r a m e t e r s  de-  
t e r m i n i n g  hea t  t r a n s f e r  m a y  be used  in o r d e r  to find the cons tan t s  D and r .  

The  p r o p o r t i o n a l i t y  f a c t o r s  and power  indices  in Eq. (2) w e r e  d e t e r m i n e d  in an analogous  m a n n e r .  

Ana lys i s  of the expe r imen ta l  data enabled us to e s tab l i sh  the f o r m  of the funct ional  r e la t ionsh ip  for  
the Biot  c r i t e r i o n  and the d i m e n s i o n l e s s  t e m p e r a t u r e  of the l iquid a v e r a g e d  over  the height  of the channel:  

Bi = 1,547.10 -s Fo(1 --0.385Fo)(GrPr2)o (6) 
.0.4/ Tex- T0 \~ 

) 
= 0.034 Fo T M  (Gr Pr~) ~ . (7) 

It fol lows f r o m  Fig .  2 that  the ca lcu la ted  r e l a t ionsh ips  s a t i s f a c t o r i l y  d e s c r i b e  the expe r imen ta l  data,  
thus c o n f i r m i n g  the va l id i ty  of Eqs .  (6) and (7) for  v e r t i c a l  channels  having the p a r a m e t e r  r anges :  

Fo = 0 - -  1.6; Biex ~ 5 0 - -  1000; (GrPr~)o = 107_  1011; 

Tex--T~ --:0.025--0.366; --(-/= 13--20;  6 -=--0.03--0.13. 
T O d d 

The  e x p e r i m e n t s  a imed  at de t e rmin ing  the boundary  condi t ions  on the s ide of the channel  su r f ace  w e r e  
a c c o m p a n i e d  by v i sua l  obse rva t i ons  of the hydrodynamic  c h a r a c t e r i s t i c s  of the convect ion  c u r r e n t s ,  us ing 
t r a n s p a r e n t  m o d e l s .  As mode l s  we used  g l a s s  tubes  of va r i ous  d i a m e t e r s  f i l led with liquid. The  tubes 
w e r e  c losed  at the  top and bo t tom with rubbe r  s topper s ,  and a hea t e r  was  mounted  in the lower  one of these .  

C o m p a r i s o n  be tween  the ex te rna l  t h e r m a l  f luxes taking p lace  in the expe r imen t s  with models  Nos.  1 
and 2 and the spec i f ic  p o w e r s  of the h e a t e r s  c h a r a c t e r i z i n g  the t r ans i t i on  f r o m  one mode  of opera t ion  to 
ano the r  in the t r a n s p a r e n t  mode l s  showed that  in al l  the expe r imen t s  the mode  of l iquid flow in the channel  
was  tu rbu len t .  This  was  c o n f i r m e d  by the absence  of t r a n s v e r s e  t e m p e r a t u r e  d i f f e rences  in any sec t ion  of 
the  channel:  the t e m p e r a t u r e s  m e a s u r e d  at d i a m e t r i c a l l y  oppos i t epo in t s  of the  channel  w e r e  a l m o s t  exac t ly  
the s a m e .  
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When the t ransparen t  model deviated f rom the ver t ica l ,  the turbulent mode was replaced by a t r ans i -  
t ional and then by a laminar  mode. When the exper iment  was c a r r i e d  out with models Nos. 1 and 2, set  at 
a ce r ta in  angle to the horizontal ,  we observed a t r an sv e r se  t empera tu re  difference;  the difference equalled 
2-5~ depending on the external  the rmal  flux of the section under considerat ion and the inclination of the 
model.  The existence of the t r a n s v e r s e  t empera tu re  difference indicated a laminar  type of flow of the liquid 
in the channel. 

The t ransi t ion f rom the more  intensive to  the less  intensive mode of flow leads to a reduction in the 
the rmal  flux passing to the wall of the channel.  F ro m  the resu l t s  of the exper iments  we may r ecommend  
the following approximate relat ionship for  the the rmal  flwr passing to the wall of a channel with i ts  axis 
inclined at an angle of y (0 << ~/<< 70 ~ to the ve r t i cah  

q~=O.6q l + - ~ - c o s y  , (8) 

where  q is the thermal  flux to the wall of the channel in the ver t i ca l  position. 

T 
T 
d, d 

g 
o~, a,  X, V, /3 

A , B ,  C ,D ,  F , n , m , p ,  r , x , y ,  z 
l 
s 
b 
ex 
0 

= (T l - W0)/(Tex- W0); 
Gr  0 = gflo/ATd3/V2o/; 
P r  o = Vol/aol; 
Fo = aolT/(d/2)2; 
Biex = OLex (d/2)/h0/; 
Bi : ~ l (d /2 ) /Xs ;  
AT = T e x -  TO. 

NOTATION 

is the tempera ture ;  
is the time; 
is the d iameter  of the channel; 
is  the thickness of the metal  bottom; 
is the gravitat ional  accelerat ion;  
a r e  the hea t - t r ans fe r  coefficient,  the rmal  diffusivity, the rmal  conduc- 

tivity, kinematic  viscosi ty,  and volume expansion coefficient;  
a re  constants in the c r i t e r i a l  relat ionships;  
r e f e r s  to the p a r a m e t e r s  of the liquid inside the channel; 
r e f e r s  to the p a r a m e t e r s  of the slab; 
r e f e r s  to the p a r a m e t e r s  of the bottom; 
r e f e r s  to the p a r a m e t e r s  of the external  medium; 
r e f e r s  to the initial  value of the p a r a m e t e r s .  

1. 
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